Part Number Hot Search : 
1N5936 39202B MAX9685 3C30S50 74AC2005 BU8241F C1510 CY7C6
Product Description
Full Text Search
 

To Download AT91SAM7SE256-AU Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features ? incorporates the arm7tdmi ? arm ? thumb ? processor ? high-performance 32-bit risc architecture ? high-density 16-bit instruction set ? leader in mips/watt ? embeddedice ? in-circuit emulation, debug communication channel support  internal high -speed flash ? 512 kbytes, organized in two contiguous banks of 1024 pages of 256 bytes dual plane (at91sam7se512) ? 256 kbytes (at91sam7se256) organized in one bank of 1024 pages of 256 bytes single plane (at91sam7se256) ? 32 kbytes (at91sam7se32) organized in one bank of 256 pages of 128 bytes single plane (at91sam7se32) ? single cycle access at up to 30 mhz in worst case conditions ? prefetch buffer optimizing thumb instruction executi on at maximum speed ? page programming time: 6 ms, including pa ge auto-erase, full erase time: 15 ms ? 10,000 erase cycles, 10-year data retentio n capability, sector lock capabilities, flash security bit ? fast flash programming interfa ce for high volume production  32 kbytes (at91sam7se512/256) or 8 kb ytes (at91sam7se32) of internal high-speed sram, single-cycle access at maximum speed  one external bus interface (ebi) ? supports sdram, static memory, gl ueless connection to compactflash ? and ecc-enabled nand flash  memory controller (mc) ? embedded flash controller ? memory protection unit ? abort status and mi salignment detection  reset controller (rstc) ? based on power-on reset cells and low-power factory-calibrated brownout detector ? provides external reset signal shaping and reset source status  clock generator (ckgr) ? low-power rc oscillator, 3 to 20 mhz on-chip oscillator and one pll  power management controller (pmc) ? power optimization capabilities, includin g slow clock mode (down to 500 hz) and idle mode ? three programmable external clock signals  advanced interrupt controller (aic) ? individually maskable, eight-level priority, vectored interrupt sources ? two external interrupt sources and one fa st interrupt source, spurious interrupt protected  debug unit (dbgu) ? two-wire uart and support for debug communication channel interrupt, programmable ice access prevention  periodic interval timer (pit) ? 20-bit programmable counter pl us 12-bit interval counter  windowed watchdog (wdt) ? 12-bit key-protected programmable counter ? provides reset or interrupt signals to the system ? counter may be stopped while the processor is in debug state or in idle mode at91 arm thumb-based microcontrollers at91sam7se512 at91sam7se256 at91sam7se32 advance information summary 6222as?atarm?21-aug-06
2 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary]  real-time timer (rtt) ? 32-bit free-running counter with alarm ? runs off the internal rc oscillator  three parallel input/output controllers (pio) ? eighty-eight programmable i/o lines multiplexed with up to two peripheral i/os ? input change interrupt ca pability on each i/o line ? individually programmable open-drain, pull-up resistor and synchronous output ? schmitt trigger on all inputs  eleven peripheral dma controller (pdc) channels  one usb 2.0 full speed (12 mb its per second) device port ? on-chip transceiver, eight endpoints, 2688-byte config urable integrated fifos  one synchronous serial controller (ssc) ? independent clock and frame sync sign als for each receiver and transmitter ? i2s analog interface support, time division multiplex support ? high-speed continuous data stream ca pabilities with 32-bit data transfer  two universal synchronous/asynchrono us receiver transmitters (usart) ? individual baud rate generator, irda ? infrared modulation/demodulation ? support for iso7816 t0/t1 smart card, hardware handshaking, rs485 support ? full modem line support on usart1  one master/slave serial peripheral interfaces (spi) ? 8- to 16-bit programmable da ta length, four external peripheral chip selects  one three-channel 16-bi t timer/counter (tc) ? three external clock inputs, two multi-purpose i/o pins per channel ? double pwm generation, capture/waveform mode, up/down capability  one four-channel 16-bit pwm controller (pwmc)  one two-wire interface (twi) ? master, multi-master and slave mode supp ort, all two-wire atmel eeproms supported ? general call supported in slave mode  one 8-channel 10-bit analog-to-digital converter, four channels multiplexed with digital i/os  sam-ba ? ? default boot program ? interface with sam-ba gr aphic user interface  ieee ? 1149.1 jtag boundary sc an on all digital pins  four high-current drive i/o lines, up to 16 ma each  power supplies ? embedded 1.8v regulator, drawing up to 10 0 ma for the core and external components ? 1.8v or 3,3v vddio i/o lines power supply, independent 3.3v vddflash flash power supply ? 1.8v vddcore core power supply with brownout detector  fully static operation: up to 48 mhz at 1.65v and 85 c worst case conditions  available in a 128-lead lqfp green package, or a 144-ball lfbga rohs-compliant package
3 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 1. description atmel's at91sam7se series is a member of its smart arm microcontroller family based on the 32-bit arm7 ? risc processor and high-speed flash memory.  at91sam7se512 features a 512 kbyte high-speed flash and a 32 kbyte sram.  at91sam7se256 features a 256 kbyte high-speed flash and a 32 kbyte sram.  at91sam7se32 features a 32 kbyte high-speed flash and an 8 kbyte sram. it also embeds a large set of peripherals, including a usb 2.0 device, an external bus interface (ebi), and a complete set of system functions minimizing the number of external components. the ebi incorporates controllers for synchr onous dram (sdram) and static memories and features specific circuitry facilitating th e interface for nand flash, smartmedia and compactflash. the device is an ideal migration path for 8/16-bit microcontroller users looking for additional per- formance, extended memory and higher levels of system integration. the embedded flash memory can be programmed in-system via the jtag-ice interface or via a parallel interface on a production programmer pr ior to mounting. built-in lock bits and a secu- rity bit protect the firmware from accidental overwrite and preserve its confidentiality. the at91sam7se series system controller includes a reset controller capable of managing the power-on sequence of the microcontroller and the complete system. correct device operation can be monitored by a built-in brownout detector and a watchdog running off an integrated rc oscillator. by combining the arm7tdmi processor with on-chip flash and sram, and a wide range of peripheral functions, including usart, spi, external bus interface, timer counter, rtt and analog-to-digital converters on a monolithi c chip, the at91sam7se512/256/32 is a powerful device that provides a flexible, cost-effective solution to many embedded control applications. 1.1 configuration summary of the at91sam7se512, at91sam 7se256 and at91sam7se32 the at91sam7se512, at91sam7se256 and at91sam 7se32 differ in memory sizes and organization. table 1-1 below summarizes the configurations for the three devices. table 1-1. configuration summary device flash size flash organization ram size at91sam7se512 512k bytes dual plane 32k bytes at91sam7se256 256k bytes single plane 32k bytes at91sam7se32 32k bytes single plane 8k bytes
4 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 2. block diagram figure 2-1. at91sam7se512/256/32 block diagram signal description reset controller pmc apb ice jtag scan arm7tdmi processor system controller aic dbgu pdc pdc pll osc rcosc bod por pio pit wdt rtt pioa piob pioc pio pio pio usart0 usart1 spi timer counter pdc pdc pdc pdc pdc pdc pdc pdc tc0 tc1 tc2 adc advref twi ssc pwmc usb device fifo static memory controller ecc controller sdram controller ebi compactflash nand flash sram 32 kbytes (se512/256) or 8 kbytes (se32) flash 512 kbytes (se512) 256 kbytes (se256) 32 kbytes (se32) 1.8v voltage regulator memory controller embedded flash controller address decoder abort status misalignment detection memory protection unit peripheral dma controller 11 channels peripheral bridge fast flash programming interface sam-ba transciever pdc rom npcs0 npcs1 npcs2 npcs3 miso mosi spck tioa0 tiob0 tioa1 tiob1 tioa2 tiob2 adtrg ad0 ad1 ad2 ad3 ad4 ad5 ad6 ad7 tclk0 tclk1 tclk2 rxd0 txd0 sck0 rts0 cts0 rxd1 txd1 sck1 rts1 cts1 dcd1 dsr1 dtr1 ri1 nrst vddcore vddcore vddflash xin xout pllrc pck0-pck2 drxd dtxd irq0-irq1 fiq tst tdi tdo tms tck jtagsel vddin gnd vddout vddcore vddio vddflash erase pgmrdy pgmnvalid pgmnoe pgmck pgmm0-pgmm3 pgmd0-pgmd15 pgmncmd pgmen0-pgmen1 d[31:0] a0/nbs0 a1/nbs2 a[15:2], a[20:18] a21/nandale a22/reg/nandcle a16/ba0 a17/ba1 ncs0 ncs1/sdcs ncs2/cfcs1 ncs3/nandcs nrd/cfoe nwr0/nwe/cfwe nwr1/nbs1/cfior nbs3/cfiow sdcke ras cas sdwe sda10 cfrnw ncs4/cfcs0 ncs5/cfce1 ncs6/cfce2 ncs7 nandoe nandwe nwait sdck ddm ddp pwm0 pwm1 pwm2 pwm3 tf tk td rd rk rf twd twck
5 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 3. signal description table 3-1. signal description list signal name function type active level comments power vddin voltage regulator and adc power supply input power 3v to 3.6v vddout voltage regulator output power 1.85v vddflash flash and usb power supply power 3v to 3.6v vddio i/o lines power supply power 3v to 3.6v or 1.65v to 1.95v vddcore core power supply power 1.65v to 1.95v vddpll pll power 1.65v to 1.95v gnd ground ground clocks, oscillators and plls xin main oscillator input input xout main oscillator output output pllrc pll filter input pck0 - pck2 programmable clock output output ice and jtag tck test clock input no pull-up resistor tdi test data in input no pull-up resistor. tdo test data out output tms test mode select input no pull-up resistor. jtagsel jtag selection input pull-down resistor. flash memory erase flash and nvm configuration bits erase command input high pull-down resistor reset/test nrst microcontroller reset i/o low pull-up resistor tst test mode select input high pull-down resistor debug unit drxd debug receive data input dtxd debug transmit data output aic irq0 - irq1 external interrupt inputs input fiq fast interrupt input input
6 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] pio pa0 - pa31 parallel io controller a i/o pulled-up input at reset pb0 - pb31 parallel io controller b i/o pulled-up input at reset pc0 - pc23 parallel io controller c i/o pulled-up input at reset usb device port ddm usb device port data - analog ddp usb device port data + analog usart sck0 - sck1 serial clock i/o txd0 - txd1 transmit data i/o rxd0 - rxd1 receive data input rts0 - rts1 request to send output cts0 - cts1 clear to send input dcd1 data carrier detect input dtr1 data terminal ready output dsr1 data set ready input ri1 ring indicator input synchronous serial controller td transmit data output rd receive data input tk transmit clock i/o rk receive clock i/o tf transmit frame sync i/o rf receive frame sync i/o timer/counter tclk0 - tclk2 external clock inputs input tioa0 - tioa2 timer counter i/o line a i/o tiob0 - tiob2 timer counter i/o line b i/o pwm controller pwm0 - pwm3 pwm channels output serial peripheral interface miso master in slave out i/o mosi master out slave in i/o spck spi serial clock i/o npcs0 spi peripheral chip select 0 i/o low npcs1-npcs3 spi peripheral chip select 1 to 3 output low table 3-1. signal description list (continued) signal name function type active level comments
7 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] two-wire interface twd two-wire serial data i/o twck two-wire serial clock i/o analog-to-digital converter ad0-ad3 analog inputs analog analog inputs ad4-ad7 analog inputs analog digital pulled-up inputs at reset adtrg adc trigger input advref adc reference analog fast flash programming interface pgmen0-pgmen2 programming enabling input pgmm0-pgmm3 programming mode input pgmd0-pgmd15 programming data i/o pgmrdy programming ready output high pgmnvalid data direction output low pgmnoe programming read input low pgmck programming clock input pgmncmd programming command input low external bus interface d[31:0] data bus i/o a[22:0] address bus output nwait external wait signal input low static memory controller ncs[7:0] chip select lines output low nwr[1:0] write signals output low nrd read signal output low nwe write enable output low nub nub: upper byte select output low nlb nlb: lower byte select output low ebi for compactflash support cfce[2:1] compactflash chip enable output low cfoe compactflash output enable output low cfwe compactflash write enable output low cfior compactflash i/o read signal output low cfiow compactflash i/o write signal output low cfrnw compactflash read not write signal output cfcs[1:0] compactflash chip select lines output low table 3-1. signal description list (continued) signal name function type active level comments
8 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] ebi for nand flash support nandcs nand flash chip select line output low nandoe nand flash output enable output low nandwe nand flash write enable output low nandcle nand flash command line enable output low nandale nand flash address line enable output low sdram controller sdck sdram clock output tied low after reset sdcke sdram clock enable output high sdcs sdram controller chip select line output low ba[1:0] bank select output sdwe sdram write enable output low ras - cas row and column signal output low nbs[3:0] byte mask signals output low sda10 sdram address 10 line output table 3-1. signal description list (continued) signal name function type active level comments
9 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 4. package the at91sam7se512/256/32 is available in:  20 x 14 mm 128-lead lqfp package with a 0.5 mm lead pitch.  10x 10 x 1.4 mm 144-ball lfbga package with a 0.8 mm lead pitch 4.1 128-lead lqfp package outline figure 4-1 shows the orientation of the 128-lead lqfp package and a detailed mechanical description is given in the mechanical characteristics section of the full datasheet. figure 4-1. 128-lead lqfp package outline (top view) 65 103 102 64 39 38 1 128
10 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 4.2 128-lead lqfp pinout table 4-1. pinout in 128-lead lqfp package 1 advref 33 pb31 65 tdi 97 sdck 2 gnd 34 pb30 66 tdo 98 pc8 3 ad7 35 pb29 67 pb2 99 pc7 4 ad6 36 pb28 68 pb1 100 pc6 5 ad5 37 pb27 69 pb0 101 pc5 6 ad4 38 pb26 70 gnd 102 pc4 7 vddout 39 pb25 71 vddio 103 pc3 8 vddin 40 pb24 72 vddcore 104 pc2 9 pa20/pgmd8/ad3 41 pb23 73 nrst 105 pc1 10 pa19/pgmd7/ad2 42 pb22 74 tst 106 pc0 11 pa18/pgmd6/ad1 43 pb21 75 erase 107 pa31 12 pa17/pgmd5/ad0 44 pb20 76 tck 108 pa30 13 pa16/pgmd4 45 gnd 77 tms 109 pa29 14 pa15/pgmd3 46 vddio 78 jtagsel 110 pa28 15 pa14/pgmd2 47 vddcore 79 pc23 111 pa27/pgmd15 16 pa13/pgmd1 48 pb19 80 pc22 112 pa26/pgmd14 17 pa12/pgmd0 49 pb18 81 pc21 113 pa25/pgmd13 18 pa11/pgmm3 50 pb17 82 pc20 114 pa24/pgmd12 19 pa10/pgmm2 51 pb16 83 pc19 115 pa23/pgmd11 20 pa9/pgmm1 52 pb15 84 pc18 116 pa22/pgmd10 21 vddio 53 pb14 85 pc17 117 pa21/pgmd9 22 gnd 54 pb13 86 pc16 118 vddcore 23 vddcore 55 pb12 87 pc15 119 gnd 24 pa8/pgmm0 56 pb11 88 pc14 120 vddio 25 pa7/pgmnvalid 57 pb10 89 pc13 121 dm 26 pa6/pgmnoe 58 pb9 90 pc12 122 dp 27 pa5/pgmrdy 59 pb8 91 pc11 123 vddflash 28 pa4/pgmncmd 60 pb7 92 pc10 124 gnd 29 pa3 61 pb6 93 pc9 125 xin/pgmck 30 pa2/pgmen2 62 pb5 94 gnd 126 xout 31 pa1/pgmen1 63 pb4 95 vddio 127 pllrc 32 pa0/pgmen0 64 pb3 96 vddcore 128 vddpll
11 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 4.3 144-ball lfbga package outline figure 4-2 shows the orientation of the 144-ball lfbga package and a detailed mechanical description is given in the mechanical characteristics section. figure 4-2. 144-ball lfbga package outline (top view) abcdefghjklm 12 11 10 9 8 7 6 5 4 3 2 1 ball a1
12 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 4.4 144-ball lfbga pinout table 4-2. sam7se512/256/32 pinout for 144-ball lfbga package pin signal name pin signal name pin signal name pin signal name a1 pb7 d1 vddcore g1 pc18 k1 pc11 a2 pb8 d2 vddcore g2 pc16 k2 pc6 a3 pb9 d3 pb2 g3 pc17 k3 pc2 a4 pb12 d4 tdo g4 pc9 k4 pc0 a5 pb13 d5 tdi g5 vddio k5 pa27/pgmd15 a6 pb16 d6 pb17 g6 gnd k6 pa26/pgmd14 a7 pb22 d7 pb26 g7 gnd k7 gnd a8 pb23 d8 pa14/pgmd2 g8 gnd k8 vddcore a9 pb25 d9 pa12/pgmd0 g9 gnd k9 vddflash a10 pb29 d10 pa11/pgmm3 g10 ad4 k10 vddio a11 pb30 d11 pa8/pgmm0 g11 vddin k11 vddio a12 pb31 d12 pa7/pgmnvalid g12 vddout k12 pa18/pgmd6/ad1 b1 pb6 e1 pc22 h1 pc15 l1 sdck b2 pb3 e2 pc23 h2 pc14 l2 pc7 b3 pb4 e3 nrst h3 pc13 l3 pc4 b4 pb10 e4 tck h4 vddcore l4 pc1 b5 pb14 e5 erase h5 vddcore l5 pa29 b6 pb18 e6 test h6 gnd l6 pa24/pgmd12 b7 pb20 e7 vddcore h7 gnd l7 pa21/pgmd9 b8 pb24 e8 vddcore h8 gnd l8 advref b9 pb28 e9 gnd h9 gnd l9 vddflash b10 pa4/pgmncmd e10 pa9/pgmm1 h10 pa19/pgmd7/ad2 l10 vddflash b11 pa0/pgmen0 e11 pa10/pgmm2 h11 pa20/pgmd8/ad3 l11 pa17/pgmd5/ad0 b12 pa1/pgmen1 e12 pa13/pgmd1 h12 vddio l12 gnd c1 pb0 f1 pc21 j1 pc12 m1 pc8 c2 pb1 f2 pc20 j2 pc10 m2 pc5 c3 pb5 f3 pc19 j3 pa30 m3 pc3 c4 pb11 f4 jtagsel j4 pa28 m4 pa31 c5 pb15 f5 tms j5 pa23/pgmd11 m5 pa25/pgmd13 c6 pb19 f6 vddio j6 pa22/pgmd10 m6 dm c7 pb21 f7 gnd j7 ad6 m7 dp c8 pb27 f8 gnd j8 ad7 m8 gnd c9 pa6/pgmnoe f9 gnd j9 vddcore m9 xin/pgmck c10 pa5/pgmrdy f10 ad5 j10 vddcore m10 xout c11 pa2/pgmen2 f11 pa15/pgmd3 j11 vddcore m11 pllrc c12 pa3 f12 pa16/pgmd4 j12 vddio m12 vddpll
13 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 5. power considerations 5.1 power supplies the at91sam7se512/256/32 has six types of power supply pins and integrates a voltage regu- lator, allowing the device to be supplied with only one voltage. the six power supply pin types are:  vddin pin. it powers the voltage regulator and the adc; voltage ranges from 3.0v to 3.6v, 3.3v nominal.  vddout pin. it is the output of the 1.8v voltage regulator.  vddio pin. it powers the i/o lines; two voltage ranges are supported: ? from 3.0v to 3.6v, 3.3v nominal ? or from 1.65v to 1.95v, 1.8v nominal.  vddflash pin. it powers the usb transceivers and a part of the flash. it is required for the flash to operate correctly; voltage ranges from 3.0v to 3.6v, 3.3v nominal.  vddcore pins. they power the logic of the device; voltage ranges from 1.65v to 1.95v, 1.8v typical. it can be connected to the vddout pin with decoupling capacitor. vddcore is required for the device, including its embedded flash, to operate correctly.  vddpll pin. it powers the oscillator and the pll. it can be connected directly to the vddout pin. in order to decrease current consumption, if the voltage regulator and the adc are not used, vddin, advref, ad4, ad5, ad6 and ad7 should be connected to gnd. in this case vddout should be left unconnected. no separate ground pins are provided for the diff erent power supplies. only gnd pins are pro- vided and should be connected as shortl y as possible to the system ground plane. 5.2 power consumption the at91sam7se512/256/32 has a static current of less t han 60 a on vddcore at 25c, including the rc oscillator, the voltage regulator and the power-on reset when the brownout detector is deactivated. activating the brownout detector adds 20 a static current. the dynamic power consumption on vddcore is less than 80 ma at full speed when running out of the flash. under the sa me conditions, the power consum ption on vddflash does not exceed 10 ma. 5.3 voltage regulator the at91sam7se512/256/32 embeds a voltage regulator that is managed by the system controller. in normal mode, the voltage regulator consumes less than 100 a static current and draws 100 ma of output current. the voltage regulator also has a low-power mode. in this mode, it consumes less than 20 a static current and draws 1 ma of output current. adequate output supply decoupling is mandator y for vddout to reduce ripple and avoid oscil- lations. the best way to achieve this is to use two capacitors in parallel:
14 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary]  one external 470 pf (or 1 nf) npo capacitor should be connected between vddout and gnd as close to the chip as possible.  one external 2.2 f (or 3.3 f) x7r capacitor should be connected between vddout and gnd. adequate input supply decouplin g is mandatory for vddin in or der to improve startup stability and reduce source voltage drop. the input decoupling capacitor should be placed close to the chip. for example, two capacitors can be used in parallel: 100 nf npo and 4.7 f x7r. 5.4 typical powe ring schematics the at91sam7se512/256/32 supports a 3.3v single supply mode. the internal regulator input connected to the 3.3v source and its output feeds vddcore and the vddpll. figure 5-1 shows the power schematics to be used for usb bus-powered systems. figure 5-1. 3.3v system single power supply schematic power source ranges from 4.5v (usb) to 18v 3.3v vddin voltage regulator vddout vddio dc/dc converter vddcore vddflash vddpll
15 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 6. i/o lines considerations 6.1 jtag port pins tms, tdi and tck are schmitt trigger inputs and are not 5v-tolerant. tms, tdi and tck do not integrate a pull-up resistor. tdo is an output, driven at up to vddio, and has no pull-up resistor. the pin jtagsel is used to select the jtag boundary scan when asserted at a high level. the pin jtagsel integrates a permanent pull-down resistor of about 15 k ? to gnd, so that it can be left unconnected for normal operations. 6.2 test pin the tst pin is used for manufacturing test or fast programming mode of the at91sam7se512/256/32 when asserted high. the tst pin integrates a permanent pull-down resistor of about 15 k ? to gnd, so that it can be left unconnected for normal operations. to enter fast programming mode, the tst pin and the pa0 and pa1 pins should be tied high and pa2 tied low. driving the tst pin at a high level while pa0 or pa1 is driven at 0 leads to unpredictable results. 6.3 reset pin the nrst pin is bidirectional. it is handled by the on-chip reset controller and can be driven low to provide a reset signal to the external components or asserted low externally to reset the microcontroller. there is no constraint on the length of the reset pulse, and the reset controller can guarantee a minimum pulse length. this allows connection of a simple push-button on the nrst pin as system user reset, and the use of the nrst signal to reset all the components of the system. an external power-on reset can dr ive this pin during the start-up instead of using the internal power-on reset circuit. the nrst pin integrates a permanent pull-up of about 100 k ? resistor to vddio . this pin is not 5v-tolerant and has schmitt trigger input. 6.4 erase pin the erase pin is used to re-initialize the flash content and some of its nvm bits. it integrates a permanent pull-down resistor of about 15 k ? to gnd, so that it can be left unconnected for nor- mal operations. this pin is debounced by the rc osc illator to improve the g litch tolerance. when the pin is tied to high during less than 100 ms, er ase pin is not taken into acc ount. the pin must be tied high during more than 220 ms to perform the re-initialization of the flash. 6.5 sdck pin the sdck pin is dedicated to the sdram clock and is an output-only without pull-up and is not 5v-tolerant. maximum output frequency of this pad is 48 mhz at 3.0v and 25 mhz at 1.65v with a maximum load of 30 pf.
16 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 6.6 pio controller lines all the i/o lines pa0 to pa31, pb0 to pb31, pc0 to pc23 integrate a programmable pull-up resistor. programming of this pull-up resistor is performed independently for each i/o line through the pio controllers. typical pull-up value is 100 k ?. all the i/o lines have schmitt trigger inputs. 6.7 i/o lines current drawing the pio lines pa0 to pa3 are high-drive current capable. each of these i/o lines can drive up to 16 ma permanently. the remaining i/o lines can draw only 8 ma. however, the total current drawn by all the i/o lines cannot exceed 300 ma.
17 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 7. processor and architecture 7.1 arm7tdmi processor  risc processor based on armv4t von neumann architecture ? runs at up to 48 mhz, providing 0.9 mips/mhz  two instruction sets ?arm ? high-performance 32-bit instruction set ?thumb ? high code density 16-bit instruction set  three-stage pipeline architecture ? instruction fetch (f) ? instruction decode (d) ? execute (e) 7.2 debug and test features  embeddedice ? (integrated embedded in-circuit emulator) ? two watchpoint units ? test access port accessible through a jtag protocol ? debug communication channel  debug unit ?two-pin uart ? debug communication channel interrupt handling ? chip id register  ieee1149.1 jtag boundary-scan on all digital pins 7.3 memory controller  programmable bus arbiter ? handles requests from the arm7tdmi and the peripheral dma controller  address decoder provides selection signals for ? four internal 1 mbyte memory areas ? one 256-mbyte embedded peripheral area ? eight external 256-mbyte memory areas  abort status registers ? source, type and all parameters of the access leading to an abort are saved ? facilitates debug by de tection of bad pointers  misalignment detector ? alignment checking of all data accesses ? abort generation in case of misalignment  remap command ? remaps the sram in place of the embedded non-volatile memory ? allows handling of dynamic exception vectors  16-area memory protection unit (internal memory and peripheral protection only)
18 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] ? individually programmable size between 1k byte and 1m byte ? individually programmable protection against write and/or user access ? peripheral protection against write and/or user access  embedded flash controller ? embedded flash interface, up to three programmable wait states ? prefetch buffer, buffering and anticipating the 16-bit requests, reducing the required wait states ? key-protected program, erase and lock/unlock sequencer ? single command for erasing, programming and locking operations ? interrupt generation in case of forbidden operation 7.4 external bus interface  integrates three external memory controllers: ? static memory controller ? sdram controller ? ecc controller  additional logic for nand flash and compactflash ? support ? nand flash support: 8-bit as well as 16-bit devices are supported ? compactflash support: all modes (attribute memory, common memory, i/o, true ide) are supported but the signals _iois16 (i/o and true ide modes) and -ata sel (true ide mode) are not handled.  optimized external bus: ? 16- or 32-bit data bus (32-bit data bus for sdram only) ? up to 23-bit address bus, up to 8-mbytes addressable ? up to 8 chip selects, each reserved to one of the eight memory areas ? optimized pin multiplexing to re duce latencies on external memories  configurable chip select assignment: ? static memory controller on ncs0 ? sdram controller or static memory controller on ncs1 ? static memory controller on ncs2, optional compactflash support ? static memory controller on ncs3, nc s5 - ncs6, optional nand flash support ? static memory controller on ncs4, optional compactflash support ? static memory controller on ncs7 7.5 static memory controller  external memory mapping, 512-mbyte address space  8-, or 16-bit data bus  up to 8 chip select lines  multiple access modes supported ? byte write or byte select lines ? two different read protocols for each memory bank
19 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary]  multiple device adaptability ? compliant with lcd module ? programmable setup time read/write ? programmable hold time read/write  multiple wait state management ? programmable wait state generation ? external wait request ? programmable data float time 7.6 sdram controller  numerous configurations supported ? 2k, 4k, 8k row address memory parts ? sdram with two or four internal banks ? sdram with 16- or 32-bit data path  programming facilities ? word, half-word, byte access ? automatic page break when memory boundary has been reached ? multibank ping-pong access ? timing parameters specified by software ? automatic refresh operation, refresh rate is programmable  energy-saving capabilities ? self-refresh, and low-power modes supported  error detection ? refresh error interrupt  sdram power-up initialization by software  latency is set to two clocks (cas latency of 1, 3 not supported)  auto precharge command not used 7.7 error corrected code controller  tracking the accesses to a nand flash device by triggering on the corresponding chip select  single bit error correction and 2-bit random detection.  automatic hamming code calculation while writing ? ecc value available in a register  automatic hamming code calculation while reading ? error report, including error flag, correctable error flag and word address being detected erroneous ? supports 8- or 16-bit nand flash devices with 512-, 1024-, 2048- or 4096-byte pages 7.8 peripheral dma controller  handles data transfer between peripherals and memories  eleven channels
20 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] ? two for each usart ? two for the debug unit ? two for the serial synchronous controller ? two for the serial peripheral interface ? one for the analog-to-digital converter  low bus arbitration overhead ? one master clock cycle needed for a transfer from memory to peripheral ? two master clock cycles needed for a transfer from peripheral to memory  next pointer management for reducing interrupt latency requirements
21 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 8. memories  512 kbytes of flash memory (at91sam7se512) ? dual plane ? two contiguous banks of 1024 pages of 256 bytes ? fast access time, 30 mhz single-cycle access in worst case conditions ? page programming time: 6 ms, including page auto-erase ? page programming without auto-erase: 3 ms ? full chip erase time: 15 ms ? 10,000 write cycles, 10-yea r data retent ion capability ? 32 lock bits, each protecting 32 lock regions of 64 pages ? protection mode to secure contents of the flash  256 kbytes of flash memory (at91sam7se256) ? single plane ? one bank of 1024 pages of 256 bytes ? fast access time, 30 mhz single-cycle access in worst case conditions ? page programming time: 6 ms, including page auto-erase ? page programming without auto-erase: 3 ms ? full chip erase time: 15 ms ? 10,000 cycles, 10-year data retention capability ? 16 lock bits, each protecting 16 lock regions of 64 pages ? protection mode to secure contents of the flash  32 kbytes of flash memory (at91sam7se32) ? single plane ? one bank of 256 pages of 128 bytes ? fast access time, 30 mhz single-cycle access in worst case conditions ? page programming time: 6 ms, including page auto-erase ? page programming without auto-erase: 3 ms ? full chip erase time: 15 ms ? 10,000 cycles, 10-year data retention capability ? 8 lock bits, each protecting 8 lock regions of 32 pages ? protection mode to secure contents of the flash  32 kbytes of fast sr am (at91sam7se512/256) ? single-cycle access at full speed  8 kbytes of fast sram (at91sam7se32) ? single-cycle access at full speed
22 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] figure 8-1. at91sam7se memory mapping internal peripherals 0x1000 0000 0x0000 0000 0x0fff ffff 0x2000 0000 0x1fff ffff 0x3000 0000 0x2fff ffff 0x4000 0000 0x3fff ffff 0x6fff ffff 0x6000 0000 0x5fff ffff 0x5000 0000 0x4fff ffff 0x7000 0000 0x7fff ffff 0x8000 0000 0x8fff ffff 0x9000 0000 0xf000 0000 0xefff ffff 0xffff ffff 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 256 mbytes 6 x 256 mbytes 1,536 mbytes 0x000f ffff 0x0010 0000 0x001f ffff 0x0020 0000 0x002f ffff 0x0030 0000 0x003f ffff 0x0040 0000 0x0000 0000 1 mbytes 1 mbytes 1 mbytes 1 mbytes 252 mbytes 0xfffa 0000 0xfffa 3fff 0xfffa 4000 0xf000 0000 0xfffb 8000 0xfffc 0000 0xfffc 3fff 0xfffc 4000 0xfffc 7fff 0xfffd 4000 0xfffd 7fff 0xfffd 3fff 0xfffd ffff 0xfffe 0000 0xfffe 3fff 0xffff efff 0xffff f000 0xffff ffff 0xfffe 4000 0xfffb 4000 0xfffb 7fff 0xfff9 ffff 0xfffc ffff 0xfffd 8000 0xfffd bfff 0xfffc bfff 0xfffc c000 0xfffb ffff 0xfffb c000 0xfffb bfff 0xfffa ffff 0xfffb 0000 0xfffb 3fff 0xfffd 0000 0xfffd c000 0xfffc 8000 16 kbytes 16 kbytes 16 kbytes 16 kbytes 16 kbytes 16 kbytes 16 kbytes 16 kbytes 16 kbytes 0x0fff ffff 512 bytes/128 registers 512 bytes/128 registers 512 bytes/128 registers 256 bytes/64 registers 16 bytes/4 registers 16 bytes/4 registers 16 bytes/4 registers 16 bytes/4 registers 256 bytes/64 registers 4 bytes/1 register 512 bytes/128 registers 512 bytes/128 registers 0xffff f000 0xffff f200 0xffff f1ff 0xffff f3ff 0xffff f9ff 0xffff fbff 0xffff fcff 0xffff feff 0xffff ffff 0xffff f400 0xffff fa00 0xffff fc00 0xffff fd0f 0xffff fc2f 0xffff fc3f 0xffff fd4f 0xffff fc6f 0xffff f5ff 0xffff f600 0xffff f7ff 0xffff f800 0xffff fd00 0xffff ff00 0xffff fd20 0xffff fd30 0xffff fd40 0xffff fd60 0xffff fd70 internal memories ebi chip select 0 smc ebi chip select 1/ smc or sdramc ebi chip select 2 smc ebi chip select 3 smc/nandflash/ smartmedia ebi chip select 4 smc compact flash ebi chip select 5 smc compact flash ebi chip select 6 ebi chip select 7 undefined (abort) (1) can be rom, flash or sram depending on gpnvm2 and remap flash before remap sram after remap internal flash internal sram internal rom reserved boot memory (1) address memory space internal memory mapping note: tc0, tc1, tc2 usart0 usart1 pwmc reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved reserved twi ssc spi sysc udp adc aic dbgu pioa reserved pmc mc wdt pit rtt rstc vreg piob pioc peripheral mapping system controller mapping
23 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] a first level of address decoding is performed by the memory controller, i.e., by the implementa- tion of the advanced sy stem bus (asb) with ad ditional features. decoding splits the 4g bytes of address space into 16 areas of 256m bytes. the areas 1 to 8 are directed to the ebi that associates these areas to the external chip selects nc0 to ncs7. the area 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1m byte of internal memory area. the area 15 is reserved for the peripherals and pro- vides access to the advanced peripheral bus (apb). other areas are unused and performing an access within them provides an abort to the master requesting such an access. 8.1 embedded memories 8.1.1 internal memories 8.1.1.1 internal sram the at91sam7se512/256 embeds a high-speed 32 -kbyte sram bank. the at91sam7se32 embeds a high-speed 8-kbyte sram bank. after reset and until the remap command is per- formed, the sram is only accessible at address 0x0020 0000. after remap, the sram also becomes available at address 0x0. 8.1.1.2 internal rom the at91sam7se512/256/32 embeds an internal rom. at any time, the rom is mapped at address 0x30 0000. the rom contains the ffpi and the sam-ba boot program. 8.1.1.3 internal flash  the at91sam7se512 features two banks of 256 kbytes of flash.  the at91sam7se256 features one bank of 256 kbytes of flash.  the at91sam7se32 features one bank of 32 kbytes of flash. at any time, the flash is mapped to address 0x0010 0000. a general purpose nvm (gpnvm) bit is used to boot either on the rom (default) or from the flash. this gpnvm bit can be cleared or set respecti vely through the commands ?clear general-pur- pose nvm bit? and ?set general-purpose nvm bit? of the efc user interface. setting the gpnvm bit 2 selects the boot from the flash, clearing it selects the boot from the rom. asserting erase clears the gpnvm bit 2 and thus selects the boot from the rom by default.
24 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] figure 8-2. internal memory mapping with gpnvm bit 2 = 0 (default) figure 8-3. internal memory mapping with gpnvm bit 2 = 1 8.1.2 embedded flash 8.1.2.1 flash overview the flash of the at91sam7se512 is organized in two banks (dual plane) of 1024 pages of 256 bytes. it reads as 131,072 32-bit words. the flash of the at91sam7se256 is organized in 1024 pages (single plane) of 256 bytes. it reads as 65,536 32-bit words. the flash of the at91sam7se32 is organized in 256 pages (single plane) of 128 bytes. it reads as 32,768 32-bit words. the flash of the at91sam7se32 contains a 128-by te write buffer, accessible through a 32-bit interface. the flash of the at91sam7se512/256 contains a 256-byte write buffer, accessible through a 32-bit interface. 256m bytes rom before remap sram after remap undefined areas (abort) 0x000f ffff 0x001f ffff 0x002f ffff 0x0fff ffff 1 m bytes 1 m bytes 1 m bytes 252 m bytes internal flash internal sram 0x0000 0000 0x0010 0000 0x0020 0000 0x0030 0000 internal rom 0x003f ffff 0x0040 0000 1 m bytes 256m bytes flash before remap sram after remap undefined areas (abort) 0x000f ffff 0x001f ffff 0x002f ffff 0x0fff ffff 1 m bytes 1 m bytes 1 m bytes 252 m bytes internal flash internal sram 0x0000 0000 0x0010 0000 0x0020 0000 0x0030 0000 internal rom 0x003f ffff 0x0040 0000 1 m bytes
25 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] the flash benefits from the integration of a power reset cell and from the brownout detector. this prevents code corruption during power su pply changes, even in the worst conditions. 8.1.2.2 embedded flash controller the embedded flash controller (efc) manages accesses performed by the masters of the sys- tem. it enables reading the flash and writing the write buffer. it also contains a user interface, mapped within the memory co ntroller on the apb. the user interface allows:  programming of the access parameters of the flash (number of wait states, timings, etc.)  starting commands such as full erase, page erase, page program, nvm bit set, nvm bit clear, etc.  getting the end status of the last command  getting error status  programming interrupts on the end of the last commands or on errors the embedded flash controller also provides a dual 32-bit prefetch buffer that optimizes 16-bit access to the flash. this is particularly efficient when the processor is running in thumb mode.  two efcs (efc0 and efc1) are embedded in the sam7se512 to control each plane of 256 kbytes. dual plane organization allows concurrent read and program.  one efc (efc0) is embedded in the sam7se256 to control the single plane 256 kbytes.  one efc (efc0) is embedded in the sam7se32 to control the single plane 32 kbytes. 8.1.2.3 lock regions the at91sam7se512 embedded flash controller manages 32 lock bits to protect 32 regions of the flash against inadvertent flas h erasing or programming commands. the at91sam7se512 contains 32 lock regions and each lock region contains 64 pages of 256 bytes. each lock region has a size of 16 kbytes. the at91sam7se256 embedded flash controller manages 16 lock bits to protect 16 regions of the flash against inadvertent flas h erasing or programming commands. the at91sam7se256 contains 16 lock regions and each lock region contains 64 pages of 256 bytes. each lock region has a size of 16 kbytes. the at91sam7se32 embedded flash controller manages 8 lock bits to protect 8 regions of the flash against inadvertent flash erasing or programming commands. the at91sam7se32 contains 8 lock regions and each lock region c ontains 32 pages of 128 bytes. each lock region has a size of 4 kbytes. if a locked-region?s erase or program command occurs, the command is aborted and the efc trigs an interrupt. the 32 (at91sam7se512), 16 (at91sam7se256) or 8 (at91sam7se32) nvm bits are soft- ware programmable through the efc user interface. the command ?set lock bit? enables the protection. the command ?clear lock bit? unlocks the lock region. asserting the erase pin clears the lock bits, thus unlocking the entire flash. 8.1.2.4 security bit feature the at91sam7se512/256/32 features a security bit, based on a specific nvm-bit. when the security is enabled, any access to the flash, either through the ice interface or through the fast flash programming interface, is forbidden.
26 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] the security bit can only be enabled through the command ?set security bit? of the efc user interface. disabling the security bit can only be achieved by asserting the erase pin at 1 and after a full flash erase is performed. when the se curity bit is deactivated, all accesses to the flash are permitted. it is important to note that the assertion of the erase pin should always be longer than 200 ms. as the erase pin integrates a permanent pull-down, it can be left unconnected during normal operation. however, it is safer to connect it directly to gnd fo r the final application. 8.1.2.5 non-volatile brownout detector control two general purpos e nvm (gpnvm) bits are used for c ontrolling the brownout detector (bod), so that even after a power loss, the brownout detector operations remain in their state. these two gpnvm bits can be cleared or set respectively through the commands ?clear gen- eral-purpose nvm bit? and ?set general-pu rpose nvm bit? of the efc user interface.  gpnvm bit 0 is used as a brownout detector enable bit. setting the gpnvm bit 0 enables the bod, clearing it disables the bod. assert ing erase clears the gpnvm bit 0 and thus disables the brownout detector by default.  gpnvm bit 1 is used as a brownout reset enable signal for the reset controller. setting the gpnvm bit 1 enables the brownout reset when a brownout is detected, clearing the gpnvm bit 1 disables the brownout rese t. asserting erase disables the brownout reset by default. 8.1.2.6 calibration bits sixteen nvm bits are used to calibrate the brownout detector and the voltage regulator. these bits are factory configured and cannot be changed by the user. the erase pin has no effect on the calibration bits. 8.1.3 fast flash programming interface the fast flash programming interface allows programming the device through either a serial jtag interface or through a multiplexed fully-han dshaked parallel port. it allows gang-program- ming with market-standard industrial programmers. the ffpi supports read, page program, page erase, full erase, lock, unlock and protect commands. the fast flash programming interface is enabled and the fast programming mode is entered when the tst pin and the pa0 and pa1 pins are all tied high and pa2 tied to low.  the flash of the at91sam7se512 is organized in 2048 pages of 256 bytes (dual plane). it reads as 131,072 32-bit words.  the flash of the at91sam7se256 is organized in 1024 pages of 256 bytes (single plane). it reads as 65,536 32-bit words.  the flash of the at91sam7se32 is organized in 256 pages of 128 bytes (single plane). it reads as 32,768 32-bit words.  the flash of the at91sam7se512/256 contains a 256-byte write buffer, accessible through a 32-bit interface.  the flash of the at91sam7se32 contains a 128-byte write buffer, accessible through a 32- bit interface.
27 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 8.1.4 sam-ba ? boot the sam-ba boot is a default boot program which provides an easy way to program in-situ the on-chip flash memory. the sam-ba boot assistant supports serial co mmunication via the dbgu or the usb device port.  communication via the dbgu supports a wide range of crystals from 3 to 20 mhz via software auto-detection.  communication via the usb device port is limited to an 18.432 mhz crystal. the sam-ba boot provides an interface with sam-ba graphic user interface (gui). the sam-ba boot is in rom and is mapped in flash at address 0x0 when gpnvm bit 2 is set to 0. 8.2 external memories the external memories are accessed through the external bus interface. refer to the memory map in figure 8-1 on page 22 .
28 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 9. system controller the system controller manages a ll vital blocks of the microcontr oller: interrupts , clocks, power, time, debug and reset. the system controller peripherals are all mapped to the highest 4 kbytes of address space, between addresses 0xffff f000 and 0xffff ffff. figure 9-1 on page 29 shows the system controller block diagram. figure 8-1 on page 22 shows the mapping of the user interface of the system controller periph- erals. note that the memory controller configuration user interface is also mapped within this address space.
29 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] figure 9-1. system controller block diagram nrst slck advanced interrupt controller real-time timer periodic interval timer reset controller pa0-pa31 periph_nreset system controller watchdog timer wdt_fault wdrproc pio controller por bod rcosc gpnvm[0] cal en power management controller osc pll xin xout pllrc mainck pllck pit_irq mck proc_nreset wdt_irq periph_irq{2-3] periph_nreset periph_clk[2..18] pck mck pmc_irq udpck nirq nfiq rtt_irq embedded peripherals periph_clk[2-3] pck[0-3] in out enable arm7tdmi slck slck irq0-irq1 fiq irq0-irq1 fiq periph_irq[4..18] periph_irq[2..18] int int periph_nreset periph_clk[4..18] embedded flash flash_poe jtag_nreset flash_poe gpnvm[0..2] flash_wrdis flash_wrdis proc_nreset periph_nreset dbgu_txd dbgu_rxd pit_irq rtt_irq dbgu_irq pmc_irq rstc_irq wdt_irq rstc_irq slck gpnvm[1] boundary scan tap controller jtag_nreset debug pck debug idle debug memory controller mck proc_nreset bod_rst_en proc_nreset periph_nreset periph_nreset idle debug unit dbgu_irq mck dbgu_rxd periph_nreset force_ntrst dbgu_txd usb device port udpck periph_nreset periph_clk[11] periph_irq[11] usb_suspend usb_suspend voltage regulator standby voltage regulator mode controller security_bit cal power_on_reset power_on_reset force_ntrst cal pb0-pb31 pc0-pc29
30 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 9.1 reset controller  based on one power-on reset cell and a double brownout detector  status of the last reset, either power-up reset, software reset, user reset, watchdog reset, brownout reset  controls the internal resets and the nrst pin output  allows to shape a signal on the nrst line, guaranteeing that the length of the pulse meets any requirement. 9.1.1 brownout detector and power on reset the at91sam7se512/256/32 embeds one brownout detection circuit and a power-on reset cell. the power-on reset is supp lied with and monitors vddcore. both signals are provided to the flash to prev ent any code corruption during power-up or power- down sequences or if brownouts occur on the vddcore power supply. the power-on reset cell has a limited-accuracy threshold at around 1.5v. its output remains low during power-up until vddcore go es over this voltag e level. this signal goes to the reset con- troller and allows a full re-initialization of the device. the brownout detector monitors the vddcor e and vddflash levels during operation by comparing it to a fixed trigger level. it secures system operations in the most difficult environ- ments and prevents code corruption in case of brownout on the vddcore or vddflash. when the brownout detector is enabled and vddcor e decreases to a value below the trigger level (vbot18-, defined as vbot18 - hyst/2), the brownout output is immediately activated. when vddcore increases above the trigger leve l (vbot18+, defined as v bot18 + hyst/2), the reset is released. the brownout detector only detects a drop if the voltage on vddcore stays below the threshold voltage for longer than about 1s. the vddcore threshold voltage ha s a hysteresis of about 50 mv , to ensure spike free brown- out detection. the typical value of the brownout detector threshold is 1.68v with an accuracy of 2% and is factory calibrated. when the brownout detector is enabled and vddflash decreases to a value below the trigger level (vbot33-, defined as vbot33 - hyst/2), the brownout output is immediately activated. when vddflash increases above the trigger level (vbot33+, defined as vbot33 + hyst/2), the reset is released. the brownout detector only detects a drop if the voltage on vddcore stays below the threshold voltage for longer than about 1s. the vddflash threshold voltage has a hysteresis of about 50 mv, to ensure spike free brown- out detection. the typical value of the brownout detector threshold is 2.80v with an accuracy of 3.5% and is factory calibrated. the brownout detector is low-power, as it consum es less than 20 a static current. however, it can be deactivated to save its static current. in this case, it consumes less than 1a. the deac- tivation is configured through the gpnvm bit 0 of the flash. 9.2 clock generator the clock generator embeds one low-power rc oscillator, one main oscillator and one pll with the following characteristics:  rc oscillator ranges betw een 22 khz and 42 khz
31 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary]  main oscillator frequency ranges between 3 and 20 mhz  main oscillator can be bypassed  pll output ranges between 80 and 220 mhz it provides slck, mainck and pllck. figure 9-2. clock generator block diagram 9.3 power management controller the power management controller uses the clock generator outputs to provide:  the processor clock pck  the master clock mck  the usb clock udpck  all the peripheral clocks, independently controllable  three programmable clock outputs the master clock (mck) is programmable from a few hundred hz to the maximum operating fre- quency of the device. the processor clock (pck) switches off when entering processor idle mode, thus allowing reduced power consumption while waiting for an interrupt. power management controller xin xout pllrc slow clock slck main clock mainck pll clock pllck control status embedded rc oscillator main oscillator pll and divider clock generator
32 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] figure 9-3. power management co ntroller block diagram 9.4 advanced interrupt controller  controls the interrupt lines (nirq and nfiq) of an arm processor  individually maskable and vectored interrupt sources ? source 0 is reserved for the fast interrupt input (fiq) ? source 1 is reserved for system peripherals (rtt, pit, efc, pmc, dbgu, etc.) ? other sources control the peripheral interrupts or external interrupts ? programmable edge-triggered or level-sensitive internal sources ? programmable positive/negative edge-triggered or high/low level-sensitive external sources  8-level priority controller ? drives the normal interrupt nirq of the processor ? handles priority of the interrupt sources ? higher priority interrupts can be served during service of lower priority interrupt  vectoring ? optimizes interrupt service routine branch and execution ? one 32-bit vector register per interrupt source ? interrupt vector register reads the corresponding current interrupt vector protect mode ? easy debugging by preventing automatic operations fast forcing ? permits redirecting any interrupt source on the fast interrupt  general interrupt mask ? provides processor synchronization on events without triggering an interrupt mck periph_clk[2..14] int udpck slck mainck pllck prescaler /1,/2,/4,...,/64 pck processor clock controller idle mode master clock controller peripherals clock controller on/off usb clock controller on/off slck mainck pllck prescaler /1,/2,/4,...,/64 programmable clock controller pllck divider /1,/2,/4 pck[0..2] usb_suspend
33 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 9.5 debug unit  comprises: ? one two-pin uart ? one interface for the debug co mmunication channel (dcc) support ? one set of chip id registers ? one interface providing ice access prevention two-pin uart ? usart-compatible user interface ? programmable baud rate generator ? parity, framing and overrun error ? automatic echo, local loopback and remote loopback channel modes  debug communication channel support ? offers visibility of commrx and commt x signals from the arm processor  chip id registers ? identification of the device revision, sizes of the embedded memories, set of peripherals ? chip id is 0x272a 0a40 (version 0) for at91sam7se512 ? chip id is 0x272a 0940 (version 0) for at91sam7se256 ? chip id is 0x2728 0340 (version 0) for at91sam7se32 9.6 periodic interval timer  20-bit programmable counter plus 12-bit interval counter 9.7 watchdog timer  12-bit key-protected programmable counter running on prescaled slck  provides reset or interrupt signals to the system  counter may be stopped while the processor is in debug state or in idle mode 9.8 real-time timer  32-bit free-running counter with alarm running on prescaled slck  programmable 16-bit prescaler for slck accuracy compensation 9.9 pio controllers  three pio controllers. pio a and b each control 32 i/o lines and pio c controls 24 i/o lines.  fully programmable through set/clear registers  multiplexing of two peripheral functions per i/o line  for each i/o line (whether assigned to a peripheral or used as general-purpose i/o) ? input change interrupt ? half a clock period glitch filter ? multi-drive option enables driving in open drain ? programmable pull-up on each i/o line ? pin data status register, supplies visib ility of the level on the pin at any time
34 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary]  synchronous output, provides set and clear of several i/o lines in a single write 9.10 voltage regulator controller the purpose of this controller is to select the power mode of the voltage regulator between normal mode (bit 0 is cleared) or standby mode (bit 0 is set).
35 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 10. peripherals 10.1 user interface the user peripherals are mapped in the 256 mbytes of the address space between 0xf000 0000 and 0xffff efff. each peripheral is allocated 16 kbytes of address space. a complete memory map is presented in figure 8-1 on page 22 . 10.2 peripheral identifiers the at91sam7se512/256/32 embeds a wide range of peripherals. table 10-1 defines the peripheral identifiers of the at91sam7se512/256/32. unique peripheral identifiers are defined for both the advanced interrupt controller and the power management controller. note: 1. setting sysirq and adc bits in the clock set/clear registers of the pmc has no effect. the system controller and adc are continuously clocked. the adc clock is automatically started for the first conversion. in sleep mode the a dc clock is automatically stopped after each conversion. table 10-1. peripheral identifiers peripheral id peripheral mnemonic peripheral name external interrupt 0 aic advanced interrupt controller fiq 1 sysirq (1) 2 pioa parallel i/o controller a 3 piob parallel i/o controller b 4 pioc parallel i/o controller c 5 spi serial peripheral interface 0 6 us0 usart 0 7 us1 usart 1 8 ssc synchronous serial controller 9 twi two-wire interface 10 pwmc pwm controller 11 udp usb device port 12 tc0 timer/counter 0 13 tc1 timer/counter 1 14 tc2 timer/counter 2 15 adc (1) analog-to digital converter 16-28 reserved 29 aic advanced interrupt controller irq0 30 aic advanced interrupt controller irq1
36 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 10.3 peripheral multiplexing on pio lines the at91sam7se512/256/32 features three pio controllers, pioa, piob and pioc, that multi- plex the i/o lines of the peripheral set. pio controller a and b control 32 lines; pio c ontroller c controls 24 lines. each line can be assigned to one of two peripheral functions, a or b. some of them can also be multiplexed with the analog inputs of the adc controller. table 10-2 on page 37 defines how the i/o lines of the peripherals a and b or the analog inputs are multiplexed on the pio controller a, b and c. the two columns ?function? and ?comments? have been inserted for the user?s own comments; they may be used to track how pins are defined in an application. note that some peripheral functions that are output only may be duplicated in the table. at reset, all i/o lines are automatically configured as input with the programmable pull-up enabled, so that the device is maintained in a static state as soon as a reset is detected.
37 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 10.4 pio controller a multiplexing table 10-2. multiplexing on pio controller a pio controller a application usage i/o line peripheral a peripheral b comments function comments pa0 pwm0 a0/nbs0 high-drive pa1 pwm1 a1/nbs2 high-drive pa2 pwm2 a2 high-drive pa3 twd a3 high-drive pa 4 t w c k a 4 pa 5 r x d 0 a 5 pa 6 t x d 0 a 6 pa 7 rt s 0 a 7 pa 8 c t s 0 a 8 pa9 drxd a9 pa 1 0 d t x d a 1 0 pa11 npcs0 a11 pa12 miso a12 pa13 mosi a13 pa14 spck a14 pa 1 5 t f a 1 5 pa16 tk a16/ba0 pa17 td a17/ba1 ad0 pa18 rd nbs3/cfiow ad1 pa 1 9 rk ncs4/cfcs0 ad2 pa 2 0 rf ncs2/cfcs1 ad3 pa21 rxd1 ncs6/cfce2 pa22 txd1 ncs5/cfce1 pa23 sck1 nwr1/nbs1/cfior pa24 rts1 sda10 pa25 cts1 sdcke pa26 dcd1 ncs1/sdcs pa27 dtr1 sdwe pa28 dsr1 cas pa 2 9 r i 1 r a s pa30 irq1 d30 pa31 npcs1 d31
38 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 10.5 pio controller b multiplexing table 10-3. multiplexing on pio controller b pio controller b application usage i/o line peripheral a peripheral b comments function comments pb0 tioa0 a0/nbs0 pb1 tiob0 a1/nbs2 pb2 sck0 a2 pb3 npcs3 a3 pb4 tclk0 a4 pb5 npcs3 a5 pb6 pck0 a6 pb7 pwm3 a7 pb8 adtrg a8 pb9 npcs1 a9 pb10 npcs2 a10 pb11 pwm0 a11 pb12 pwm1 a12 pb13 pwm2 a13 pb14 pwm3 a14 pb15 tioa1 a15 pb16 tiob1 a16/ba0 pb17 pck1 a17/ba1 pb18 pck2 d16 pb19 fiq d17 pb20 irq0 d18 pb21 pck1 d19 pb22 npcs3 d20 pb23 pwm0 d21 pb24 pwm1 d22 pb25 pwm2 d23 pb26 tioa2 d24 pb27 tiob2 d25 pb28 tclk1 d26 pb29 tclk2 d27 pb30 npcs2 d28 pb31 pck2 d29
39 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 10.6 pio controller c multiplexing 10.7 serial peripheral interface  supports communication with external serial devices ? four chip selects with external decoder allow communication with up to 15 peripherals ? serial memories, such as dataflash ? and 3-wire eeproms ? serial peripherals, such as adcs, dacs, lcd controllers, can controllers and sensors ? external co-processors  master or slave serial peripheral bus interface multiplexing on pio controller c pio controller c application usage i/o line peripheral a peripheral b comments function comments pc0 d0 pc1 d1 pc2 d2 pc3 d3 pc4 d4 pc5 d5 pc6 d6 pc7 d7 pc8 d8 rts1 pc9 d9 dtr1 pc10 d10 pck0 pc11 d11 pck1 pc12 d12 pck2 pc13 d13 pc14 d14 npcs1 pc15 d15 ncs3/nandcs pc16 a18 nwait pc17 a19 nandoe pc18 a20 nandwe pc19 a21/nandale pc20 a22/reg/nandcle ncs7 pc21 nwr0/nwe/cfwe pc22 nrd/cfoe pc23 cfrnw ncs0
40 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] ? 8- to 16-bit programmable data length per chip select ? programmable phase and polarity per chip select ? programmable transfer delays per chip select, between consecutive transfers and between clock and data ? programmable delay between consecutive transfers ? selectable mode fault detection ? maximum frequency at up to master clock 10.8 two wire interface  master, multi-master and slave mode operation  compatibility with standard two-wire serial memories  one, two or three bytes for slave address  sequential read/write operations  bit rate: up to 400 kbit/s  general call supported in slave mode 10.9 usart  programmable baud rate generator  5- to 9-bit full-duplex synchronous or asynchronous serial communications ? 1, 1.5 or 2 stop bits in asynchronous mode ? 1 or 2 stop bits in synchronous mode ? parity generation and error detection ? framing error detection, overrun error detection ? msb or lsb first ? optional break generation and detection ? by 8 or by 16 over-sampling receiver frequency ? hardware handshaking rts - cts ? modem signals management dtr-dsr-dcd-ri on usart1 ? receiver time-out and transmitter timeguard ? multi-drop mode with address generation and detection  rs485 with driver control signal  iso7816, t = 0 or t = 1 protocols for interfacing with smart cards ? nack handling, error counter with repetition and iteration limit irda ? modulation and demodulation ? communication at up to 115.2 kbps  test modes ? remote loopback, local loopback, automatic echo 10.10 serial synchronous controller  provides serial synchronous communication links used in audio and telecom applications  contains an independent receiver and transmitter and a common clock divider
41 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary]  offers a configurable frame sync and data length  receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal  receiver and transmitter include a data signal , a clock signal and a frame synchronization signal 10.11 timer counter  three 16-bit timer counter channels ? three output compare or two input capture  wide range of functions including: ? frequency measurement ? event counting ? interval measurement ? pulse generation ? delay timing ? pulse width modulation ? up/down capabilities  each channel is user-configurable and contains: ? three external clock inputs ? five internal clock inputs, as defined in table 10-4 ? two multi-purpose input/output signals ? two global registers that act on all three tc channels 10.12 pwm controller  four channels, one 16-bit counter per channel  common clock generator, providing thirteen different clocks ? one modulo n counter providing eleven clocks ? two independent linear dividers working on modulo n counter outputs  independent channel programming ? independent enable/disable commands ? independent clock selection ? independent period and duty cycle, with double buffering ? programmable selection of the output waveform polarity ? programmable center or left aligned output waveform table 10-4. timer counter clocks assignment tc clock input clock timer_clock1 mck/2 timer_clock2 mck/8 timer_clock3 mck/32 timer_clock4 mck/128 timer_clock5 mck/1024
42 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] 10.13 usb device port  usb v2.0 full-speed compliant,12 mbits per second.  embedded usb v2.0 full-speed transceiver  embedded 2688-byte dual-port ram for endpoints  eight endpoints ? endpoint 0: 64bytes ? endpoint 1 and 2: 64 bytes ping-pong ? endpoint 3: 64 bytes ? endpoint 4 and 5: 512 bytes ping-pong ? endpoint 6 and 7: 64 bytes ping-pong ? ping-pong mode (two memory banks) for isochronous and bulk endpoints  suspend/resume logic  integrated pull-up on ddp 10.14 analog-to-digital converter  8-channel adc  10-bit 384 ksamples/sec. or 8-bit 583 ksam ples/sec. successive approximation register adc  -3/+3 lsb integral non linearity, -2/+2 lsb differential non linearity  integrated 8-to-1 multiplexer, offering eight independent 3.3v analog inputs  external voltage reference for better accuracy on low voltage inputs  individual enable and disable of each channel  multiple trigger sources ? hardware or software trigger ? external trigger pin ? timer counter 0 to 2 outputs tioa0 to tioa2 trigger  sleep mode and conversion sequencer ? automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels  each analog input shared with digital signals
43 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 11. package drawings figure 11-1. 128-lead lqfp package drawing this package respects the recommendations of the nemi user group. table 11-1. device and lqfp package maximum weight at91sam7se512/256/32 800 mg table 11-2. package reference jedec drawing reference ms-026 jesd97 classification e2 table 11-3. lqfp package characteristics moisture sensitivity level 3
44 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] figure 11-2. 144-ball lfbga package drawing this package respects the recommendations of the nemi user group. all dimensions are in mm table 11-4. device and lfba package maximum weight at91sam7se512/256/32 mg table 11-5. package reference jedec drawing reference ms-026 jesd97 classification e1 table 11-6. lfbga package characteristics moisture sensitivity level 3
45 6222as?atarm?21-aug-06 at91sam7se512/256/32 [ad vance information summary] 12. ordering information table 12-1. ordering information ordering code package package type temperature operating range at91sam7se512-au lqfp128 green industrial (-40 c to 85 c) AT91SAM7SE256-AU lqfp128 green industrial (-40 c to 85 c) at91sam7se32-au lqfp128 green industrial (-40 c to 85 c) at91sam7se512-cj lfbga144 green industrial (-40 c to 85 c) at91sam7se256-cj lfbga144 green industrial (-40 c to 85 c) at91sam7se32-cj lfbga144 green industrial (-40 c to 85 c)
46 6222as?atarm?21-aug-06 at91sam7se512/256/32 [advance information summary] revision history doc. rev comments change request ref. 622as first issue revised memories with condensed mapping. added package outlines and 144-ball lfbga pin and ordering information. #2709
disclaimer: the information in this document is provided in connection with atmel products. no license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of atmel products. except as set forth in atmel?s terms and condi- tions of sale located on atmel? s web site, atmel assumes no liability whatsoever and disclaims any express, implied or statutor y warranty relating to its products including, but not limited to , the implied warranty of merchantability, fitness for a particu lar purpose, or non-infringement. in no event shall atmel be liable for any direct, indirect, conseque ntial, punitive, special or i nciden- tal damages (including, without limitation, damages for loss of profits, business interruption, or loss of information) arising out of the use or inability to use this document, even if at mel has been advised of the possibility of such damages. atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the ri ght to make changes to specifications and product descriptions at any time without notice. atmel does not make any commitment to update the information contained her ein. unless specifically provided otherwise, atmel products are not suitable for, and shall not be used in, automotive applications. atmel?s products are not int ended, authorized, or warranted for use as components in applications intended to support or sustain life. atmel corporation atmel operations 2325 orchard parkway san jose, ca 95131, usa tel: 1(408) 441-0311 fax: 1(408) 487-2600 regional headquarters europe atmel sarl route des arsenaux 41 case postale 80 ch-1705 fribourg switzerland tel: (41) 26-426-5555 fax: (41) 26-426-5500 asia room 1219 chinachem golden plaza 77 mody road tsimshatsui east kowloon hong kong tel: (852) 2721-9778 fax: (852) 2722-1369 japan 9f, tonetsu shinkawa bldg. 1-24-8 shinkawa chuo-ku, tokyo 104-0033 japan tel: (81) 3-3523-3551 fax: (81) 3-3523-7581 memory 2325 orchard parkway san jose, ca 95131, usa tel: 1(408) 441-0311 fax: 1(408) 436-4314 microcontrollers 2325 orchard parkway san jose, ca 95131, usa tel: 1(408) 441-0311 fax: 1(408) 436-4314 la chantrerie bp 70602 44306 nantes cedex 3, france tel: (33) 2-40-18-18-18 fax: (33) 2-40-18-19-60 asic/assp/smart cards zone industrielle 13106 rousset cedex, france tel: (33) 4-42-53-60-00 fax: (33) 4-42-53-60-01 1150 east cheyenne mtn. blvd. colorado springs, co 80906, usa tel: 1(719) 576-3300 fax: 1(719) 540-1759 scottish enterprise technology park maxwell building east kilbride g75 0qr, scotland tel: (44) 1355-803-000 fax: (44) 1355-242-743 rf/automotive theresienstrasse 2 postfach 3535 74025 heilbronn, germany tel: (49) 71-31-67-0 fax: (49) 71-31-67-2340 1150 east cheyenne mtn. blvd. colorado springs, co 80906, usa tel: 1(719) 576-3300 fax: 1(719) 540-1759 biometrics/imagin g/hi-rel mpu/ high speed converters/rf datacom avenue de rochepleine bp 123 38521 saint-egreve cedex, france tel: (33) 4-76-58-30-00 fax: (33) 4-76-58-34-80 literature requests www.atmel.com/literature 6222as?atarm?21-aug-06 ? atmel corporation 2006. all rights reserved. atmel?, logo and combinations thereof, everyw here you are?, dataflash? and others, are reg- istered trademarks, sam-ba ? and others are trademarks of atmel corporation or its subsidiaries. arm?, the arm powered? logo and others, are registered trademarks, arm7 ? and embeddedice ? and others are trademarks of arm limite d. other terms and product names may be trademarks of others.


▲Up To Search▲   

 
Price & Availability of AT91SAM7SE256-AU

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X